Quantcast
Channel: Efficient C/C++ – Barr Code
Viewing all articles
Browse latest Browse all 13

C’s goto Keyword: Should we Use It or Lose It?

$
0
0

In the 2008 and 2013 editions of my bug-killing Embedded C Coding Standard, I included this rule:

Rule 1.7.c. The goto keyword shall not be used.

Despite this coding standard being followed by about 1 in 8 professional embedded systems designers, none of us at Barr Group have heard any complaints that this rule is too strict. (Instead we hear lots of praise for our unique focus on reducing intra-team stylistic arguments by favoring above all else C coding rules that prevent bugs.)

However, there exist other coding standards with a more relaxed take on goto. I’ve thus been revisiting this (and related) rules for an updated 2018 edition of the BARR-C standard.

Specifically, I note that the current (2012) version of the MISRA-C Guidelines for the Use of the C Programming Language in Critical Systems merely advises against the use of goto:

Rule 15.1 (Advisory): The goto statement should not be used

though at least the use of goto is required to be appropriately narrowed:

Rule 15.2 (Required): The goto statement shall jump to a label declared later in the same function

Rule 15.3 (Required): Any label referenced by a goto statement shall be declared in the same block, or in any block enclosing the goto statement

Generally speaking, the rules of the MISRA-C:2012 standard are either the same as or stricter than those in my BARR-C standard. In addition to overlaps, they have more and stricter coding rules and we add stylistic advice. It is precisely because MISRA-C’s rules are stricter and only BARR-C includes stylistic rules that these two most popular embedded programming standards frequently and easily combined.

Which all leads to the key question:

Should the 2018 update to BARR-C relax the prior ban on all use of goto?

According to the authors of the C programming language, “Formally, [the goto keyword is] never necessary” as it is “almost always easy to write code without it”. They go on to recommend that goto “be used rarely, if at all.”

Having, in recent days, reviewed the arguments for and against goto across more than a dozen C programming books as well as other C/C++ coding standards and computer science papers, I believe there is just one best bug-killing argument for each side of this rule. And I’ll have to decide between them this week to keep the new edition on track for a June release.

Allow goto: For Better Exception Handling

There seems to be universal agreement that goto should never be used to branch UP to an earlier point in a function. Likewise, branching INTO a deeper level of nesting is a universal no-no.

However, branching DOWN in the function and OUT to an outer level of nesting are often described as powerful uses of the goto keyword. For example, a single goto statement can be used to escape from two or more levels of nesting. And this is not a behavior that can be done with a single break or continue. (To accomplish the same behavior without using goto, one could, e.g., set a flag variable in the inner block and check it in each outer block.)

Given this, the processing of exceptional conditions detected inside nested blocks is a potentially valuable application of goto that could be implemented in a manner compliant with the three MISRA-C:2012 rules quoted above. Such a jump could even proceed from two or more points in a function to a common block of error recovery code.

Because good exception handling is a property of higher reliabilty software and is therefore a potential bug killer, I believe I must consider relaxing Rule 1.7.c in BARR-C:2018 to permit this specific use of goto. A second advantage of relaxing the rule would be increasing the ease of combining rules from MISRA-C with those from BARR-C (and vice versa), which is a primary driver for the 2018 update.

Ban goto: Because It’s Even Riskier in C++

As you are likely aware, there are lots of authors who opine that use of goto “decreases readability” and/or “increases potential for bugs”. And none other than Dijkstra (50 years ago now!) declared that the “quality of programmers is [inversely proportional to their number] of goto statements”.

But–even if all true–none of these assertions is a winning argument for banning the use of goto altogether vs. the above “exception handling exception” suggested by the above.

The best bug-killing argument I have heard for continued use of the current Rule 1.7.c is that the constructors and destructors of C++ create a new hazard for goto statements. That is, if a goto jumps over a line of code on which an object would have been constructed or destructed then that step would never occur. This could, for example, lead to a very subtle and difficult type of bug to detect–such as a memory leak.

Given that C++ is a programming language intentionally backward compatible with legacy C code and that elsewhere in BARR-C there is, e.g., a rule that variables (which could be objects) should be declared as close as possible to their scope of use, relaxing the existing ban on all use of goto could forseeably create new hazards for the followers of the coding standard who later migrate to C++. Indeed, we already have many programmers following our C coding rules while crafting C++ programs.

So what do you think? What relevant experiences can bring to bear on this issue in the comments area below? Should I relax the ban on goto or maintain it? Are there any better (bug-killing) arguments for or against goto?


Viewing all articles
Browse latest Browse all 13

Latest Images

Trending Articles





Latest Images